Gallium platinum alloys – a new material system for UV plasmonics
نویسندگان
چکیده
We describe a new material system based on alloys of gallium and platinum that is well-suited for ultraviolet (UV) plasmonics. Although gallium has previously been shown to be useful for such studies, creating a continuous, pinhole-free thin film has been technically challenging. For example, when vacuum deposition techniques are used, gallium forms as isolated spherical nanoparticles on a wide variety of substrates. We demonstrate that when a platinum wetting layer is deposited first on a substrate followed by a thick gallium layer, a Ga-Pt alloy thin film is formed near the interface. The excess surface gallium can then be removed using a focused ion beam (FIB), exposing the alloy film. Ellipsometry measurements show that the alloy largely retains the dielectric properties of solid gallium throughout the UV, although the properties of the two diverge somewhat in the visible. We fabricate periodic subwavelength aperture arrays in the alloy thin film and observe enhanced optical transmission resonances that are sharper in the UV than in the visible. The patterned films appear to be stable over time periods exceeding six months based on optical measurements. © 2017 Optical Society of America OCIS codes: (160.3900) Metals; (250.5403) Plasmonics; (260.7190) Ultraviolet. References and links (s 1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189– 193 (2006). 2. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012). 3. A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012). 4. K. A. Willets, A. J. Wilson, V. Sundaresan, and P. B. Joshi, “Super-resolution imaging and plasmonics,” Chem. Rev. 117(11), 7538–7582 (2017), doi:10.1021/acs.chemrev.6b00547. 5. R. F. Chen, “Fluorescence quantum yields of tryptophan and tyrosine,” Anal. Lett. 1(1), 35–42 (1967). 6. C. R. Johnson, M. Ludwig, S. O’Donnell, and S. A. Asher, “UV resonance Raman spectroscopy of the aromatic amino acids and myoglobin,” J. Am. Chem. Soc. 106(17), 5008–5010 (1984). 7. G. D. Fasman, Practical Handbook of Biochemistry and Molecular Biology (CRC Press, 1989). 8. C. An, S. Peng, and Y. Sun, “Facile synthesis of sunlight-driven AgCl:Ag plasmonic nanophotocatalyst,” Adv. Mater. 22(23), 2570–2574 (2010). 9. S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012). 10. J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the nearand far-field regimes: Geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013). 11. M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014). 12. H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of aluminum,” Phys. Rev. 132(5), 1918–1928 (1963). 13. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics (Springer-Verlag, 1988), Vol. 111. Vol. 7, No. 8 | 1 Aug 2017 | OPTICAL MATERIALS EXPRESS 2880 #294948 https://doi.org/10.1364/OME.7.002880 Journal © 2017 Received 1 May 2017; revised 30 Jun 2017; accepted 3 Jul 2017; published 12 Jul 2017 14. G. H. Chan, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008). 15. K. Appusamy, S. Blair, A. Nahata, and S. Guruswamy, “Low-loss magnesium films for plasmonics,” Mater. Sci. Eng. B 181, 77–85 (2014). 16. F. Sterl, N. Strohfeldt, R. Walter, R. Griessen, A. Tittl, and H. Giessen, “Magnesium as novel material for active plasmonics in the visible wavelength range,” Nano Lett. 15(12), 7949–7955 (2015). 17. K. Appusamy, X. Jiao, S. Blair, A. Nahata, and S. Guruswamy, “Mg thin films with Al seed layers for UV plasmonics,” J. Phys. D Appl. Phys. 48(18), 184009 (2015). 18. H.-H. Jeong, A. G. Mark, and P. Fischer, “Magnesium plasmonics for UV applications and chiral sensing,” Chem. Commun. (Camb.) 52(82), 12179–12182 (2016). 19. M. Santamaria, F. Di Quarto, S. Zanna, and P. Marcus, “Initial surface film on magnesium metal: A characterization by X-ray photoelectron spectroscopy (XPS) and photocurrent spectroscopy (PCS),” Electrochim. Acta 53(3), 1314–1324 (2007). 20. A. V. Krasavin, K. F. MacDonald, N. I. Zheludev, and A. V. Zayats, “High-contrast modulation of light with light by control of surface plasmon polariton wave coupling,” Appl. Phys. Lett. 85(16), 3369–3371 (2004). 21. J. M. McMahon, G. C. Schatz, and S. K. Gray, “Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi,” Phys. Chem. Chem. Phys. 15(15), 5415–5423 (2013). 22. Y. Yang, J. M. Callahan, T.-H. Kim, A. S. Brown, and H. O. Everitt, “Ultraviolet nanoplasmonics: a demonstration of surface-enhanced Raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles,” Nano Lett. 13(6), 2837–2841 (2013). 23. J. Wang, S. Liu, S. Guruswamy, and A. Nahata, “Injection molding of free-standing, three-dimensional, allmetal terahertz metamaterials,” Adv. Opt. Mater. 2(7), 663–669 (2014). 24. Y. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet–visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014). 25. T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, “Size-dependent melting temperature of individual nanometer-sized metallic clusters,” Phys. Rev. B Condens. Matter 42(13), 8548–8556 (1990). 26. W. R. Tyson and W. A. Miller, “Surface free energies of solid metals: Estimation from liquid surface tension measurements,” Surf. Sci. 62(1), 267–276 (1977). 27. P. Guex and P. Feschotte, “Les systèmes binaires platine-aluminium, platinegallium et platine-indium,” J. Less Common Met. 46(1), 101–116 (1976). 28. T. B. Massalski, H. Okamoto, and A. S. M. International, Binary Alloy Phase Diagrams (ASM International, 1990). 29. M. Li, C. Li, F. Wang, and W. Zhang, “Thermodynamic assessment of the Ga–Pt system,” Intermetallics 14(7), 826–831 (2006). 30. M. M. Yazdanpanah, V. V. Dobrokhotov, A. Safir, S. Pabba, D. Rojas, and R. W. Cohn, “Room temperature growth of single intermetallic nanostructures on nanoprobes,” The 11th Annual NSTI Nanotech, Boston, MA, 1, 896–899 (2008). 31. R. W. Cohn, “Freestanding metallic and polymeric nanostructures: Directed self-assembly,” in Dekker Encyclopedia of Nanoscience and Nanotechnology, Third Edition (CRC Press, 2014), pp. 1450–1474. 32. M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015). 33. T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007). 34. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
منابع مشابه
Plasmonics in the Ultraviolet with Aluminum, Gallium, Magnesium and Rhodium
Ultraviolet plasmonics (UV) has become an active topic of research due to the new challenges arising in fields such as biosensing, chemistry or spectroscopy. Recent studies have pointed out aluminum, gallium, magnesium and rhodium as promising candidates for plasmonics in the UV range. Aluminum and magnesium present a high oxidation tendency that has a critical effect in their plasmonic perform...
متن کاملLong-term stability of capped and buffered palladium-nickel thin films and nanostructures for plasmonic hydrogen sensing applications
One of the main challenges in optical hydrogen sensing is the stability of the sensor material. We found and studied an optimized material combination for fast and reliable optical palladium-based hydrogen sensing devices. It consists of a palladium-nickel alloy that is buffered by calcium fluoride and capped with a very thin layer of platinum. Our system shows response times below 10 s and alm...
متن کاملGrowth and Optoelectronic Properties ofifi-Nitride Quatemary Alloys
InA1GaiN quaternary alloys with different In and Al compositions were grown on sapphire substrates with GaN buffer by metal-organic chemical vapor deposition (MOCVD). Optical properties of these quaternary alloys were studied by picosecond time-resolved photoluminescence. Our studies have revealed that InAlGaiN quaternary alloys with lattice matched with GaN (y—4.7x) have the highest optical qu...
متن کاملThe Temperature Dependence of Spectral
The Temperature Dependence of Spectral Walter Braun, Broadening in the Hg (6'So0 6P,) Multiplet Milton D. Scheer, and At High Optical Densities Victor Kaufman 313 Absolute Isotopic Abundance Ratio And Atomic Weight L. A. Machlan, J. W. Gramlich, Of a Reference Sample of Gallium L. J. Powell, and G. M. Lambert 323 Thermal Expansion of Platinum R. E. Edsinger, M. L. Reilly, and And Platinum-Rhodi...
متن کاملGallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles.
Gallium has recently been demonstrated as a phase-change plasmonic material offering UV tunability, facile synthesis, and a remarkable stability due to its thin, self-terminating native oxide. However, the dense irregular nanoparticle (NP) ensembles fabricated by molecular-beam epitaxy make optical measurements of individual particles challenging. Here we employ hyperspectral cathodoluminescenc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017